

Journal of Organometallic Chemistry 529 (1997) 243-255

The role of lithium 1,3-bis(trimethylsilyl)-1-aza-allyls in phosphorus chemistry

Peter B. Hitchcock, Michael F. Lappert *, Marcus Layh

The Chemistry Laboratory, University of Sussex, Brighton, BN1 9QJ, UK

Received 20 May 1996; revised 17 June 1996

Abstract

Treatment of the lithium 1-aza-allyl [Li{N(R)C('Bu)CHR}]₂ 1, abbreviated as $[Li(LL')]_2$, with PCl₃ gave in poor yields the *trans-P,P'*-dichlorodiazaphosphetidine ClPN(R')P(Cl)NR' 3 (R = SiMe₃, R' = C('Bu)=C(H)SiMe₃). An improved route to 3 was based on [{Cu(μ -LL')}₂] and PCl₃; but the method of choice involved conversion of 1 into successively the imine RN=C('Bu)CHR₂ 4 (which upon heating gave the isomeric enamine 5) and Cl₂PN=C('Bu)CHR₂ 6 and thermolysis of 6. The imine RN=C('Bu)CHR)Ph₂ 7, obtained from [Li(LL')]₂ 1 and Ph₂PCl, was isomerised into the Z-enamine R₂NC('Bu)=C(H)Ph₂ 8, which upon irradiation gave a mixture of 8 and its *E*-isomer 9. Treatment of 7 with R"PCl₂ or PCl₃ gave the cyclic phosphonium chlorides [Ph₂PP(R")N(H)C('Bu)=CH]Cl (10 R" = Ph, or 11 R" = Et) or [Ph₂PP(Cl)N(R)C('Bu)=CH]Cl 12; 12 with AgOSO₂CF₃ or Na[BPh₄] afforded [Ph₂PP(Cl)N(R)C('Bu)=CH]A (13 A = CF₃SO₃, or 14 A = BPh₄). The enamines RN=C('Bu)CH(X)R (15 X = Cl, or 16 X = I) were obtained from 1 and POCl₃ or ICl respectively, and the enamine R₂NC(Ph)=CR₂ 17 was obtained from the lithium 1-aza-allyl[Li{N(R)C(Ph)CR₂}(THF)] and CF₃SO₃SiMe₃. Compounds 3-17 were characterised by multinuclear NMR spectroscopy and (in most cases) MS; while single crystal X-ray diffraction data are provided for 3 and 10.

Keywords: Lithium; Phosphorus; Aza-allyl; Phosphetidine; Phosphonium salt; Crystal structure

1. Introduction

We recently reviewed the synthesis and reactions of alkali metal α, ω -bis(trimethylsilyl)-1-aza-allyl and - β -diketiminates, including their role as precursors for preparing unusual transition metal and main group element complexes [1]. A major topic of this paper concerns reactions of the 1-aza-allyl-lithium complex $[\overline{\text{Li}(\text{LL}')}]_2$ 1 (*LL'* = *R*NC('Bu)CHR, R = SiMe₃) in the context of phosphorus chemistry.

Complex 1 is readily obtained from LiCHR₂ and 'BuCN in diethyl ether or pentane under ambient conditions, Eq. (1) [2], and has already successfully been used to obtain $[K(LL')]_n$, $rac-[Zr(LL')_2Cl_2]$ [2], $rac-[Yb(LL')_2]$ [3] and $[Zr(LL')Cl_3]$ [4]; experiments are in hand on derivatives of tin(II), lead(II), iron(II) and cobalt(II), using $[LL']^-$ or a closely related ligand [5]. Among the general features of interest are: (i) the variety of bonding modes of $[LL']^-$, including η^3 -chelating, η^2 -bridging and η^1 -enamido; (ii) the lability

of the Me₃Si substituents; (iii) the chiral nature, at C-3, of the metal-bound η^3 -1-aza-allyl ligand.

2. Results and discussion

2.1. Synthesis of the 1,3,2- λ^3 ,4- λ^3 -diazaphosphetidine 3

Three alternative routes to the P,P'-trans-dichlorodiazaphosphetidine **3**, from (i) PCl₃ and $[\overline{\text{Li}(\text{LL}')}]_2$ **1**, (ii) $[\{\text{Cu}(\mu-\text{LL}')\}_2]$ **2** (details of which will be published elsewhere) or (iii) RN=C('Bu)CHR₂ **4** are illustrated in Scheme 1, which also shows the thermal isomerisation of the ketimine **4** into the enamine R₂NC('Bu)=CHR **5**.

^{*} Corresponding author.

First we attempted to introduce the $[LL']^-$ ligand to a phosphorus(III) centre, by using $[\overline{Li}(LL')]_2$ 1 as a ligand transfer reagent. When 1 was treated with PCl₃ in a ratio of 3Li:1P, in a variety of solvents and under differing reaction conditions, an orange-red solution and a large quantity of a similarly coloured precipitate were obtained; the latter was insoluble in several common aprotic solvents; it probably consisted of a mixture of LiCl and oligomeric phosphorus-containing species. In one experiment, however, we were able to isolate a small amount of colourless crystals of 3 from the reaction mixture ((i) in Scheme 1), which was fully characterised by microanalysis, NMR and MS spectra and single crystal X-ray diffraction (Section 2.4).

The pathway to 3 from 1 probably involves $[LL']^-$ behaving as an *N*-centred nucleophile in attacking PCl₃ to give Cl₂PN(R)C('Bu)=CHR, which then eliminates Me₃SiCl to give ClP=NC('Bu)=CHR; the latter probably has various oligomerisation routes available, one of which is the 2 + 2 cyclodimerisation to yield 3. There are precedents for an iminophosphine being dimerised [6].

For an ambidentate N,C-monoanionic ligand, C- over N-centred nucleophilicity is often favoured by using a silver(I), rather than a lithium, salt. In another investigation, we had made the 1-aza-allylcopper(I) compound 2

in high yield from 1 (the Ag(I) analogue was unstable); from 2 and PCl₃ ((ii) in Scheme 1), the yield of 3 was still modest (25%), but was an improvement compared with the lithium route.

The method of choice for converting 1 into 3 proved to be one in which $[\overline{\text{Li}(\text{LL}')}]_{2}$, 1 was first converted into the ketimine $RN = C(^{t}Bu)CHR_{2}$ 4. The latter with PCl_{3} afforded $Cl_2PN = C(^{t}Bu)CHR_2$ 6 ((iv) in Scheme 1), which on heating ((v) in Scheme 1) gave 3 in 55% yield. However, even this route was not without difficulty. Thus, $[\overline{\text{Li}(\text{LL}')}]_2$ 1 proved to be unreactive towards Me₃SiCl in boiling toluene. Converting 1 into $[K(LL')]_n$ and treating the latter with Me₃SiCl gave a mixture of the ketimine 4 and its isomer, the enamine $R_2 NC(^{t}Bu) = CHR 5$, in a ratio of ca. 1:3. Compound 4 was finally made in good yield from 1 and trimethylsilyl triflate ((iii) in Scheme 1). Heating the ketimine 4 above 130°C gave the thermodynamically favoured product, the isomeric enamine 5 ((vi) in Scheme 1). The latter was unreactive towards PCl₃ and various other phosphorus chlorides. This behaviour seems to be a characteristic of N,N-bis(trimethylsilyl)enamines (cf. 8 and 17).

Attempts to make a P,P'-dihydrocarbyl or -bis(dimethylamino)analogue of **3**, by treating **1** or **4** with PhPCl₂ or R₂CHPCl₂, or **1** with (Me₂N)PF₂, invari-

ably gave a mixture of products, as was also the case when 1 was treated with $(Me_2N)_2PCI$. However, from 1 and Ph_2PCI , the ketimine $RN=C(^{t}Bu)CH(R)PPh_2$ 7 ((i) in Scheme 2) was obtained in high yield, and this compound proved to be a key starting material for obtaining a range of heterocyclic compounds, as shown in Scheme 2.

A further item of interest is that heating the ketimine 7 yielded the isomeric Z-enamine 8 ((ii) in Scheme 2), which upon photolysis gave a mixture of 8 and its E-isomer 9.

2.2. Synthesis of the salts $[Ph_2PP(X)N(Y)C(^{'}Bu)=CH]A 10-14$

The synthesis of the phosphonium salts 10-14 is illustrated in Scheme 2 together with the isomerisations

(MesSi)2

Treatment of 7 with PhPCl₂ ((iv) in Scheme 2) readily afforded in high yield the phosphonium salt [Ph₂PP(Ph)N(H)C(^tBu)=CH]Cl 10, which was insoluble in pentane or diethyl ether, but soluble in dichloromethane or hot toluene; X-ray quality crystals were grown from the latter. The salt 10 was fully characterised by microanalysis, NMR and MS spectra and single crystal X-ray diffraction (Section 2.5).

The formation of 10 from 7 involves one or other of the sequence of reactions of Scheme 3. The first step ((i) in Scheme 3) is the N-centred nucleophilic attack of 7 at the phosphorus of PhPCl₂, yielding the ketimidophosphorus(III) chloride PhP(Cl)N = C-(¹Bu)CH(R)PPh₂ A with concomitant Me₃SiCl elimination, a process which is similar to the formation of $6 + Me_3SiCl$ from $4 + PCl_3$ ((iv) in Scheme 1). The second step is either ((ii) in Scheme 3) the transformation of A into the isomeric enamidophosphorus(III)

Scheme 2.

chloride PhP(Cl)N(R)C('Bu)=C(R)PPh₂ B, which has a n a logy with the isomerisations 7 8 9 ((ii) and (iii) in Scheme 2) and 4 5 ((vi) in Scheme 1). The third step is the cyclisation ((iii) in Scheme 3) effected as a consequence of the nucleophilic intramolecular displacement of the chloride as the anion in C; related cyclisations involving

chloride as the anion in C; related cyclisations involving nucleophilic displacement of Cl⁻ from a chlorophosphine by a phosphine are well established [7]. The final, probably inadvertent, hydrolysis ((iv) in Scheme 3) converts C into 10. Further support for C as an intermediate came from the observation that the ketimine 7 with PCl₃, in pentane at low temperature, yielded the labile salt $[Ph_2PP(C1)N(R)C(^{t}Bu)=CH]C1$ 12 ((v) in Scheme 2), which with silver triflate or sodium tetraphenylborate gave the stable analogues $[Ph_{2}PP(Cl)N(R)C(^{1}Bu)=CH]A$ (13 A = CF₃SO₃, or 14 BPh₄). An alternative pathway to 10 from 7 via A involves as the second step the cyclisation of A(v) in Scheme 3) to give the cyclo-ketim idophosphonylphophonium salt $[Ph_{PP}(Ph)N=C(^{T}Bu)CHR]Cl D$, followed by its rearrangement ((vi) in Scheme 3).

In a process similar to the reaction between 7 and $PhPCl_2 \rightarrow 10$, the former compound with $EtPCl_2$ gave ((iv) in Scheme 2) $[Ph_2PP(Et)N(H)C(^tBu)=CH]Cl$ 11.

Despite repeating several times the reaction ((iv) in Scheme 2) between 7 and RPCl_2 , the isolated product was invariably 10 (R = Ph) or 11 (R = Et); the fate of the initially *N*-bound trimethylsilyl group (cf. C in Scheme 3) remains a mystery.

2.3. Further reactions of 1-aza-allyllithium compounds

Treatment of $[\overline{\text{Li}(\text{LL}')}]_2$ with POCl₃ or ICl, in a ratio of 2Li:1P or 1Li:1I in pentane or diethyl ether respectively, gave, after distillation, the ketimine $\text{RN}=\text{C}(^{1}\text{Bu})\text{CH}(\text{X})\text{R}$ **15** (X = Cl, Eq. (2)) or **16** (X = I, Eq. (3)) respectively. Compounds **15** and **16** were obtained as air-sensitive, yellow, distillable liquids, which gave reasonably satisfactory microanalysis and NMR and MS (**16** only) data.

We have recently prepared the lithium complex of a trimethylsilyl derivative of the ligand $[LL']^-$, $Li\{N(R)C(Ph)CR_2\}(THF) E$ (details of which will be published elsewhere). The ligand $[N(R)C(Ph)CR_2]^-$ is even more bulky than $[LL']^-$. Having had only limited success with converting $[\overline{Li}(LL')]_2$ 1 directly into the phosphetidine 3, but having obtained satisfactory results by transforming 1 into the imine $RN=C(^{t}Bu)CHR_2$ 4 and reacting 4 (rather than 1) with PCl_3 , we treated E with trimethylsilyl triflate. This afforded the enamine $R_2NC(Ph)=CR_2$ 17, rather then the isomeric ketimine $RN=C(Ph)CR_3$, Eq. (4). It may well be that the latter is

Fig. 1. Molecular structure of 3.

too sterically hindered to be thermally stable, and even if it had been the kinetic product it must rapidly have rearranged into 17. The enamine 17 proved to be inert not only to PCl₃ (at 80 °C) but also to PhPCl₂ at 120 °C and PhPF₂ at 50 °C; in this respect the enamine 17 behaves similarly to 5 and 8 (see Section 2.1).

2.4. The structure of the diazaphosphetidine 3

The X-ray molecular structure of the crystalline *trans-P,P'*-dichlorodiazaphosphetidine **3** is illustrated in Fig. 1, with the atom numbering scheme. Selected bond lengths and angles are listed in Tables 1 and 2 (with comparative data on three analogues) and the non-hydrogen atom coordinates in Table 3.

The crystalline compound **3** is centrosymmetric. It has a planar \overline{PNPN} ring, with the *N*-ligating sp²-carbon atoms also coplanar, the sum of the angles at nitrogen (ΣN) being 360°. The endocyclic ring angle at nitrogen, 98.46(9)°, is significantly greater than that at phosphorus, 81.54(9)°. The Cl-P-N and Cl-P-N' bond angles are significantly narrower than tetrahedral; the mutually trans-lone pairs at phosphorus appear to be very much stereochemically active. The alkenyl groups have the *E*-configuration, so as to minimise steric effects, the t-butyl groups being trans- to SiMe₃. As a consequence, there are close contacts between the SiMe₃ groups and the phosphorus atoms, $P \cdots C(8)$ 4.50 Å, an effect which persists in solution as evident from the observed ¹H and ¹³C{¹H} NMR spectra of **3** in [²H₈] toluene.

The skeletal geometry of the diazaphosphetidine 3 is broadly similar to those of three other P,P'-dichlorodi-

(4)

Cl-P	2.107(1)	Si-C(8)	1.856(3)	
Si-C(9)	1.857(3)	Si-C(7)	1.868(3)	
Si-C(2)	1.873(3)	P-N#1	1.699(2)	
P-N	1.707(2)	N-C(1)	1.434(3)	
N-P ¹	1.699(2)	C(1)–C(2)	1.326(3)	
C(1)-C(3)	1.526(3)	C(3)–C(6)	1.525(4)	
C(3)–C(5)	1.526(4)	C(3)-C(4)	1.541(4)	
C(8)-Si-C(9)	110.8(2)	C(8)–Si–C(7)	108.1(2)	
C(9)-Si-C(7)	108.7(2)	C(8)-Si-C(2)	114.15(13)	
C(9)-Si-C(2)	111.11(14)	C(7)-Si-C(2)	103.52(14)	
N ¹ -P-N	81.54(9)	N#1-P-Cl	102.97(7)	
N-P-Cl	102.49(7)	C(1) - N - P # 1	126.49(14)	
C(1)-N-P	135.0(2)	P#1-N-P	98.46(9)	
C(2)-C(1)-N	119.9(2)	C(2)-C(1)-C(3)	125.6(2)	
N-C(1)-C(3)	114.5(2)	C(1)-C(2)-Si	137.7(2)	
C(6)-C(3)-C(5)	108.2(3)	C(6)-C(3)-C(1)	111.4(2)	
C(5)-C(3)-C(1)	110.3(2)	C(6)-C(3)-C(4)	107.6(2)	
C(5)-C(3)-C(4)	109.7(2)	C(1)-C(3)-C(4)	109.7(2)	

Table 1 Selected bond lengths (Å) and angles (deg) for 3

Symmetry transformations used to generate equivalent atoms: ' - x, -y, -z.

azaphosphetidines F [8], G [9] and H [10] which have been crystallographically characterised, except in one important aspect: the chlorides in F-H are arranged in cis manner, Table 2.

<u>Two</u> recently reported monochloro analogues $ClPN(^{t}Bu)P(N^{i}Pr_{2})NC_{6}H_{2}Bu_{3}^{t} - 2,4,6$ [11] and

 $ClPN(SiMe_3)P(NHC_6H_2^{t}Bu_3 - 2,4,6)NC_6H_2^{t}Bu_3 - 2,4,6)NC_6H_2^{t}Bu$ 2,4,6 [12], were also shown to have cis-geometry. There has been much interest in $cis \rightarrow trans$ isomerism in this class of compounds; the trans-isomer appears generally to be kinetically favoured and often isomerises to the thermodynamically preferred cis-product [9]. A contrary has been put forward view for $Me_2 N\overline{PN(SiMe_3)P(NMe_2)NSiMe_3}$, which on the basis of NMR spectroscopic data was assigned to be the cis-kinetic product; upon heating it gave a mixture of cis- and trans-isomers [13]. It may well be that bulky amido substituents at P and P', favour the trans isomer, since cis-ClPN(Ph)P(Cl)NPh upon aminolysis afforded exclusively trans- $R'_2 NPN(Ph)P(NR'_2)NPh$ (R' = ⁿ Bu or Ph) [9]. In contrast, crystalline $Ph(H)NPN(Ph)P\{N(H)Ph\}NPh$ was shown to be the cis-isomer [14]; other pertinent data are in Ref. [15].

When a sample of the *trans*-diazadiphosphetidine 3 in C_6D_6 in an NMR spectroscopic tube was either (i)

Table 2 Some comparative structural data on four crystalline P,P'-dichlorodiazaphosphetidines

-	•	1 1		
Parameter	$Cl\overline{PN(R')P(Cl)NR} 3^{a}$	ClPN(^t Bu)P(Cl)N ^t Bu F ^b	CIPN(Ph)P(CI)NPh G ^c	ClPN(Ar)P(Cl)NAr H ^d
1(P-N) (Å)	1.699(2)	1.687(9), 1.681(9)	1.698(10), 1.691(10)	1.698(3), 1.704(3), 1.701(3), 1.703(3)
1(P–Cl) (Å)	2.107(1)	2.114(7). 2.096(7)	2.075(6). 2.099(9)	2.091(1), 2.103(1)
$1(N-C_{sn^2})(Å)$	1.434(3)		1.423(9)	1.444(4), 1.449(4)
NPN (deg)	81.54(9)	82.3(4), 82.6(4)	80.1(3). 80.5(4)	81.5(9), 81.4(1)
PNP' (deg)	98.46(9)	97.6(5), 96.9(5)	99.7(4)	97.8(1), 97.9(1)
Σ N (deg)	360	360, 352.7	359.9	356.6, 356.8
Disposition of Cl ⁻ ligands	trans	cis	cis	cis

^a $\mathbf{R}' = \mathbf{C}({}^{t}\mathbf{B}\mathbf{u}) = \mathbf{C}\mathbf{H}\mathbf{S}\mathbf{i}\mathbf{M}\mathbf{e}_{3}$; this work; ^b Ref. [8]; ^c Ref. [9]; ^d $\mathbf{A}\mathbf{r} = \mathbf{C}_{6}\mathbf{H}_{2}^{1}\mathbf{P}\mathbf{r}_{3}$ -2,4,6 [10].

Table 3 Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for 3

-					
	x	у	z	U _{eq}	
Cl	-1361 (1)	221(1)	1849(1)	70(1)	
Si	-3119(1)	1 977(1)	- 1761(1)	54(1)	
Ρ	500 (1)	100(1)	1078(1)	41(1)	
Ν	1(2)	877(1)	- 101(1)	37(1)	
C(1)	-63(2)	1997(2)	- 313(2)	38(1)	
C(2)	- 1218(3)	2409(2)	- 1023(2)	49(1)	
C(3)	1297(3)	2612(2)	294(2)	46(1)	
C(4)	1378(4)	2578(3)	1588(2)	68(1)	
C(5)	2709(3)	2133(3)	19(3)	64(1)	
C(6)	1219(4)	3773(2)	- 66(3)	88(1)	
C(7)	- 4242(3)	3221(3)	- 1844(3)	80(1)	
C(8)	- 3982(3)	973(3)	-967(3)	77(1)	
C(9)	- 3114(4)	1514(4)	- 3229(3)	87(1)	

 $U_{\rm eq}$ is defined as one-third of the trace of the orthogonilised U_{ij} tensor.

set aside for 7 days at ambient temperature or (ii) heated for several hours, there was no evidence of isomerisation. This thermal stability of **3** is attributed to steric effects (cf. the *E* configuration in the alkenyl group and the proximity of the SiMe₃ group to the phosphorus atoms).

The high ³¹P NMR spectroscopic chemical shift value, δ 268.2, for a solution of **3** in [²H₈]toluene showed that the trans-configuration of **3** was retained in solution. It had previously been established that this is a

Table 4			
Selected bor	id lengths (Å) a	nd angles (deg)f	or 10

	8	8 (8)		
P(1)-N	1.694(4)	P(1)-C(9)	1.826(4)	
P(1)-P(2)	2.208(2)	P(2) - C(2)	1.737(5)	
P(2)-C(19)	1.780(5)	P(2) - C(3)	1.784(4)	
N-C(1)	1.375(5)	C(1) - C(2)	1.343(6)	
N-P(1)-C(9)	103.4(2)	N-P(1)-P(2)	87.51(13)	
C(9) - P(1) - P(2)	97.66(14)	C(2) - P(2) - C(19)	112.9(2)	
C(2) - P(2) - C(3)	114.9(2)	C(19) - P(2) - C(3)	108.8(2)	
C(2) - P(2) - P(1)	95.7(2)	C(19) - P(2) - P(1)	110.5(2)	
C(3) - P(2) - P(1)	113.59(14)	C(1) - N - P(1)	122.6(3)	
C(2)-C(1)-N	118.6(4)	C(2)–C(1)–C(15)	124.3(4)	

feature which distinguishes trans- from cis-isomers [6– 16]. Furthermore, the stereochemical rigidity of **3** in solution was demonstrated by the proton-phosphorus coupling involving the SiMe₃ protons, giving rise to a virtual triplet $J({}^{1}H-{}^{31}P) = 1.3 \text{ Hz}$ (which disappeared in the ${}^{1}H\{{}^{31}P\}$ NMR spectrum) and the corresponding $J({}^{13}C-{}^{31}P) = 5.8 \text{ Hz}$ observed for the SiMe₃ carbons. In the ${}^{31}P\{{}^{1}H\}$ NMR spectrum a single broad ($\omega_{1/2} =$ 180 Hz) signal at δ 268 was detected. The ${}^{29}Si\{{}^{1}H\}$ NMR spectrum also showed a singlet signal.

2.5. The structure of the phosphonium salt 10

The X-ray structure of the cation salt $[Ph_2PP(Ph)N(H)C(^{t}Bu)=CH]Cl$ 10 is illustrated in Fig. 2, with the atom numbering scheme. Selected bond

Fig. 2. Molecular structure of 10.

Table 5 Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for **10**

<u>. </u>	x	y z	<u> </u>	U _{eq}
CI	3808.5(5)	3343(2)	- 437.2(7)	79(1)
P(1)	3810.9(4)	1763(1)	1803.8(7)	52(1)
P(2)	3940.4(4)	2527(1)	3111.2(7)	49(1)
Ν	3883(1)	3478(4)	1499(2)	59(1)
C(1)	3903(2)	4616(5)	2047(3)	58(1)
C(2)	3902(1)	4344(5)	2867(3)	61(1)
C(3)	3564(1)	1898(5)	3765(2)	48(1)
C(4)	3620(1)	591(5)	4176(3)	57(1)
C(5)	3312(2)	81(6)	4619(3)	68(1)
C(6)	2945(2)	825(6)	4643(3)	79(2)
C(7)	2884(2)	2115(6)	4229(4)	87(2)
C(8)	3194(2)	2658(6)	3800(3)	69(1)
C(9)	3231(1)	1606(5)	1749(2)	50(1)
C(10)	3065(2)	402(6)	2093(3)	70(1)
C(11)	2629(2)	192(7)	2040(4)	86(2)
C(12)	2358(2)	1159(7)	1618(4)	93(2)
C(13)	2516(2)	2306(7)	1252(4)	98(2)
C(14)	2954(2)	2571(6)	1323(3)	75(2)
C(15)	3926(2)	6111(6)	1677(3)	81(2)
C(16)	3997(3)	7246(6)	2353(4)	132(3)
C(17)	4286(2)	6177(7)	1147(4)	137(3)
C(18)	3504(3)	6394(7)	1114(5)	147(3)
C(19)	4463(2)	2008(6)	3563(3)	62(1)
C(20)	4632(2)	698(7)	3389(4)	94(2)
C(21)	5031(2)	336(10)	3775(4)	128(3)
C(22)	5259(2)	1268(12)	4310(5)	125(4)
C(23)	5092(2)	2558(11)	4492(4)	128(3)
C(24)	4696(2)	2951(7)	4110(3)	93(2)

 $U_{\rm eq}$ is defined as one-third of the trace of the orthogonilised U_{ij} tensor.

lengths and angles are listed in Table 4 and the non-hydrogen atom coordinates in Table 5.

The $\overline{P(2)P(1)NC(1)C}(2)$ ring in 10 is almost planar, with P(1) and C(2) 0.099 Å on one side, and P(2) (0.099 Å), N(0.089 Å) and C(1) (0.059 Å) on opposite sides, of the plane, and C(9) (attached to P(1)) - 1.909 Å and C(15) (attached to C(1)) 0.059 Å out of the plane. The <u>PPNCC</u> framework appears to have only a single structurally characterised precedent in I [17]. There are

Table 6 Some comparative data on five cyclic phosphonium cations

four cyclic ureido-phosphonium salts [X(Y)PP(R')N(Me)C(O)NMe][A] J (X = Me = R', Y $= NEt_2$ and A = Cl) [18], $K (X = Ph, R' = CHCl_2,$ $Y = {}^{t}Bu$ and $A = BPh_4$) [19] and $[MeNC(O)N(Me)PP(NEt_2)N(Me)C(O)NMe]A$ (L $A = PF_6$, or M A = Cl) [20], which have cations related to those in 10 and I, for which there are X-ray crystallographic data; some comparative parameters are in Table 6.

Bond distances to the $\lambda^4 P^+$, probably due to the positive charge at this phosphorus atom, are generally shorter than those to $\lambda^3 P$. In **10**, an additional slight shortening of the endocyclic $\lambda^4 P^+$ -C distance compared with the exocyclic distances is observed, which may indicate a degree of delocalisation in the ring system. Another interesting feature of the structure is the fact that the chloride anion is bonded to the cation via a nearly linear N-H ··· Cl hydrogen bridge

Parameter	10	1	J	K	L
$\overline{1(P-P)}(A)$	2.208(2)	2.228(2)	2.191(2)	2.223(2)	2.193
$1(P^{III}-C_{exo})(Å)$	1.826(4)	_	1.840(5)	1.863(3)	
1(P ¹¹¹ –N) (Å)	1.694(4)	1.677(4)	1.761(3)	1.704(3)	1.713, 1.714
$1(P^{V}-C_{exo})$ Å	1.780(5), 1.784(4)		1.781(4)	1.828(4), 1.788(4)	_
$1(P^{V}-C_{ende})$ Å	1.737(5)	_	_		_
$1(P^V - N_{endo}) Å$		1.605(3)	1.670(2)	1.658(3)	1.647, 1.630
$C_{sn^2} - N(ring) (Å)$	1.375(5)	1.352(8)	1.363(5), 1.389(3)	1.407(5), 1.389(5)	1.413, 1.361
$C_{sp^2} - C_{sp^2}(Å)$	1.343(6)	1.476(6)	_		_
$P^{V}P^{III}N$ (deg)	87.5(1)	80.1(1)	88.4(1)	88.6(1)	87.8, 87.3
$P^{III}P^{V}(C/N)_{endo}$ (deg)	110.5(2)	103.1(1)	95.4(1)	94.7(1)	97.0, 96.7
ΣP^{III}	288.6	294.7	286.5	290.8	283.5

N···· Cl: 3.096(4) Å, NHCl 158(1)°, **10** being a tight ion pair. This structural element is unique for these ring systems, because with substituents other than hydrogen at N, the chloride is close to the $\lambda^4 P^+$ (cf. K). In the case of more bulky anions (I, J, L or M) than chloride, well separated ion pairs are observed instead.

Solutions of 10–14 in CDCl₃ show chemicals shifts in the ³¹P{¹H} NMR spectrum for the ⁴ λ P⁺ of δ 15–63 with coupling constants ¹J(³¹P–³¹P) in the range of 228–279 Hz, which are in the lower range of reported values [7,18,19,21].

3. Experimental details

All manipulations were carried out under argon, using standard Schlenk techniques. Solvents were distilled from drying agents and degassed. The NMR spectra were recorded in C_6D_6 or CDCl₃ at 298 K using the following Bruker instruments: AC-P 250 (¹H, 250.1; ¹¹B, 80.3; ¹³C, 62.9; ³¹P 101.2; ²⁹Si 49.7 MHz), DPX 300 (¹H, 300.1; ¹³C 75.5; ³¹P, 121.5 MHz) and AMX 500 (¹H, 500.1; ¹³C, 125.7 MHz) and referenced internally to residual solvent resonances (data in δ) in the case of ¹H and ¹³C-spectra. The ³¹P, ²⁹Si and ¹¹B-spectra were referenced externally to H₃PO₄, SiMe₄ and BF₃(OEt₂) respectively. Unless otherwise stated, all NMR spectra other then ¹H were proton-decoupled. Electron impact mass spectra were taken from solid samples using a Kratos MS 80 RF instrument. Melting points were taken in sealed capillaries and are uncorrected.

3.1. Reaction of $[Li[N(R)C(^{1}Bu)CHR]]_{2}$ 1 with PCl₃

A solution of $[\overline{\text{Li}(\text{L}L')}]_2$ **1** (1.61 g, 3.2 mmol) in pentane (15 cm³) was added dropwise to PCl₃ (0.44 g, 3.2 mmol) in pentane (20 cm³) at -25 °C. The reaction mixture was allowed to warm to room temperature and then was stirred for another 90 min. The volatiles were removed under vacuum and the residue was extracted with pentane (20 cm³). The extract was freed from solvent and crystallised from diethyl ether, to yield colourless crystals of the diazadiphosphetidine **3** (0.05 g, 6.6%), m.p. 139–142 °C (decomp.). Anal. Found: C, 45.8; H, 8.09; N, 5.81. C₁₈H₃₈Cl₂N₂P₂Si₂. Calc.: C, 45.9; H, 8.12; N, 5.94%. MS: m/z (%) 470/2 (40) $[M_2]^+$, 455 (22) $[M_2 - \text{Me}]^+$, 435 (52) $[M_2 - \text{Cl}]^+$, 413 (100) $[M_2 - {}^{1}\text{Bu}]^+$, 400 (12) $[M_2 - 2 \text{ Cl}]^+$, 235/7 (65) $[M]^{+}$. ¹H NMR (C₇D₈): δ 0.31 (virtual t, SiMe₃, $J({}^{1}\text{H}-{}^{31}\text{P})$ 1.3 Hz), δ 1.13 (s, ${}^{1}\text{Bu}$), δ 5.14 (s, CH); ${}^{31}\text{P}$ NMR (C₇D₈); δ 268.2; ${}^{13}\text{C}$ NMR (C₇D₈): δ 1.1 (t, SiMe₃, $J({}^{13}\text{C}-{}^{31}\text{P})$ 5.8 Hz), δ 29.6 (t, C(CH₃)₃, ${}^{4}J({}^{13}\text{C}-{}^{31}\text{P})$ 5.0 Hz), δ 38.2 (t, $C(\text{CH}_3)_3$, ${}^{3}J({}^{13}\text{C}-{}^{31}\text{P})$ 1.2 Hz), δ 113.7 (s, b, CH), δ 156.1 (t, CN, ${}^{2}J({}^{13}\text{C}-{}^{31}\text{P})$ 2.3 Hz); ²⁹Si NMR (CDCl₃/C₇H₈): $\delta - 10.9$ (s, SiMe₃).

3.2. Reaction of $[Cu[N(R)C('Bu)CHR]]_2$ 2 with PCl_3

A solution of $[{Cu(\mu-LL')}_2]$ 2 (1.05 g, 1.71 mmol) in pentane (25 cm³) was added slowly to a solution of PCl₃ (0.30 cm³, 3.42 mmol) in pentane (50 cm³) at -70 °C. The reaction mixture was allowed to warm to room temperature and stirred for 1 h. Filtration from a voluminous white precipitate and removal of volatiles from the filtrate gave a yellow oil. After recrystallisation from Et₂O, colourless crystals of **3**, (0.21 g, 25%) were obtained. The characterisation of **3** is described in Section 3.1.

3.3. Preparation of $Me_3SiN = C(^{t}Bu)CH(SiMe_3)_2$ 4

A solution of trimethylsilyl triflate (0.69 g, 3.1 mmol) in pentane (10 cm³) was added to $[\text{Li}(\text{LL}')]_2$ 1 (0.77 g, 1.55 mmol) in pentane (30 cm³) at -30 °C. The mixture was allowed to warm to room temperature and was stirred for 3 h, then filtered. Volatiles were removed in vacuo from the combined filtrate and washings. The residual colourless oily imine 4 (0.9 g, 92%) slowly solidified at room temperature, m.p.: 25–30 °C. Anal. Found: C, 57.0; H, 11.8; N, 4.49. C₁₅H₃₇NSi₃. Calc.: C, 57.1; H, 11.8; N, 4.44%. MS: m/z (%) 300 (58) $[M - \text{Me}]^+$, 258 (100) $[M - \text{CMe}_3]^+$, 242 (29) [M -SiMe₃]⁺; IR: ν (C=N), 1679 cm⁻¹. ¹H NMR (C₆D₆): δ 0.12 (s, NSiMe₃), δ 0.33 (s, SiMe₃), δ 1.01 (s, ¹Bu), δ 2.39 (s, CH); ¹³C NMR (C₆D₆): δ 1.5 (s, SiMe₃), δ 3.2 (s, SiMe₃), δ 29.9 (s, C(CH₃)₃), δ 35.0 (s, CH), δ 43.4 (s, C(CH₃)₃), δ 187.4 (s, CN).

3.4. Preparation of $(Me_3Si)_2 N(Bu)C = CH(SiMe_3) 5$

Thermolysis of the imine 4, either by heating 4 for 90 min in refluxing xylene, or heating pure 4 at 130 °C for 30 min, yielded the enamine 5 in essentially quantitative yield; it sublimed at ca. $130 \,^{\circ}C/10^{-3}$ Torr. MS: m/z (%): 300 (17) $[M - Me]^+$, 258 (100) $[M - Me]^+$, 242 (5) $[M - SiMe_3]^+$. ¹H NMR (C₆D₆): δ 0.21 (s, SiMe₃), δ 0.26 (s, NSiMe₃), δ 1.14 (s, ¹Bu), δ 5.41 (s, CH); ¹³C NMR (C₆D₆): δ 1.0 (s, SiMe₃), δ 3.6 (s, NSiMe₃), δ 32.0 (s, C(CH₃)₃), δ 40.2 (s, C(CH₃)₃)), δ 119.5 (s, CH), δ 168.4 (s, CN).

3.5. Preparation of $Cl_2 PN = C({}^{t}Bu)CH(SiMe_3)_2$ 6

Phosphorus(III) chloride $(0.41 \text{ cm}^3, 0.65 \text{ g}, 4.75 \text{ mmol})$ was added by pipette to the imine **4** (1.50 g, 4.75 mmol) at room temperature; the reaction was exothermic, but the mixture was stirred at 50 °C for a further 60 min. Volatiles were removed under vacuum; the residue was redissolved in diethyl ether (10 cm³)

and removal of volatiles in vacuo yielded the colourless solid imidophosphorus(III) chloride **6** (1.4 g, 86%). MS: m/z (%): 343 (0.4) $[M]^+$, 328 (0.8) $[M - Me]^+$, 308 (50) $[M - CI]^+$, 286 (54) $[M - CMe_3]^+$. ¹H NMR (C₆D₆): δ 0.06 (s, SiMe₃), δ 1.00 (s, ¹Bu), δ 2.22 (d, CH, ⁴J(¹H-³¹P) 4.1 Hz); ³¹P NMR (C₆D₆): δ 109.5; ¹³C NMR (C₆D₆): δ 1.2 (s, SiMe₃), δ 28.9 (d, C(CH₃)₃, ⁴J(¹³C-³¹P) 5.2 Hz), δ 38.3 (d, CH, ³J(¹³C-³¹P) 5.0 Hz), δ 43.7 (s, C(CH₃)₃), δ 199.0 (d, CN, ²J(¹³C-³¹P) 8.6 Hz).

Further purification of 6 was not attempted, since it slowly decomposed at room temperature, yielding the diazaphosphetidine 3; see Section 3.6.

3.6. Synthesis of the diazaphosphetidine 3 from 6

The solid imidophosphorus(III) chloride **6**, obtained from the imide **4** (1.18 g, 3.77 mmol) and PCl₃ (0.52 g, 3.77 mmol), was heated to $70 \,^{\circ}\text{C}/10^{-2}$ Torr for 45 min. The solid was observed to melt at ca. $60 \,^{\circ}\text{C}$; the pressure increased as the elimination of Me₃SiCl commenced. The melt solidified and the pressure reverted back to 10^{-2} Torr. The cooled solid was dissolved in diethyl ether (25 cm³); cooling to $-30 \,^{\circ}\text{C}$ afforded colourless crystals of the diazaphosphetidine **3** (0.35 g, 40%), while the mother liquor yielded a further crop (0.13 g, 15%). The characterisation of **3** is described in Section 3.1.

3.7. Reaction of $[Li{N(R)C('Bu)CHR}]_2$ 1 with Ph_2PCl

A solution of $[Li(LL')]_2$ 1 (1.58 g, 3.15 mmol) in pentane (20 cm^3) was added slowly (10 min) dropwise to a solution of Ph₂PCl (1.39 g, 6.3 mmol) in pentane (40 cm^3) at $-70 \degree$ C. The reaction mixture was allowed to warm to room temperature and was then stirred for 60 min. The colourless precipitate was filtered off. The volatiles were removed from the filtrate in vacuo. The residual pale yellow oil was identified as the imine $Me_3SiN = C(^{t}Bu)CH(SiMe_3)PPh_2$ 7 (2.48 g, 92%). It melted just above room temperature. MS: m/z (%) 428 (3) $[M + H]^+$, 412 (13) $[M - Me]^+$, 370 (100) $[M - CMe_3]^+$, 349 (10) $[M - C_6H_6]^+$. ¹H NMR (C_6D_6): $\delta 0.08$ (d, SiMe₃, ⁴J(¹H-³¹P) 1.1 Hz), $\delta 0.48$ (s, NSiMe₃), $\delta 0.73$ (s, ¹Bu), $\delta 3.95$ (d, CH, ²J(¹H-³¹P) 5.7 Hz), δ 6.99 (m, Ph), δ 7.10 (m, Ph), δ 7.60 and 7.72 (t, *o*-Ph); ³¹P NMR (C₆D₆): δ - 1.5; ¹³C NMR $\delta 0.7$ (d, SiMe₃, ³J(¹³C-³¹P) 6.7 Hz), $\delta 3.0$ (s, NSiMe₃), δ 28.6 (s, C(CH₃)₃), δ 40.7 (d, CH, ⁻¹J(¹³C-³¹P) 27.8 Hz), δ 43.6 (s, $C(CH_3)_3$), δ 128.0 (d, m-C, ${}^{3}J({}^{13}C-{}^{31}P)$ 7 Hz); δ 128.5 (d, *m*-C, ${}^{3}J({}^{13}C-{}^{31}P)$ 7.7 Hz), δ 128.9 (s, p-C), δ 129.3 (s, p-C), δ 134.6 (d, *o*-C, ${}^{2}J({}^{13}C-{}^{31}P)$ 11 Hz), δ 135.0 (d, *o*-C, ${}^{2}J({}^{13}C-{}^{31}P)$ 7.9 Hz), δ 138.8 (d, *ipso*-C, ${}^{1}J({}^{13}C-{}^{31}P)$ 16.6 Hz), δ 140.8 (d, *ipso*-C, ${}^{1}J({}^{13}C-{}^{31}P)$ 29.7 Hz), δ 183.0 (d, **CN**).

3.8. Isomerisation of the imine 7 into the enamines $(Me_3Si)_2NC({}^{t}Bu) = C(H)PPh_2$ 8 and 9

Attempts to distil the imine 7 at 10^{-2} Torr, with the heating bath at 150 °C, gave the colourless Z-enamine 8 (1.55 g, 56%), m.p. 90 °C. Anal. Found: C, 67.3; H, 8.96; N, 3.22. C₂₄H₃₈NPSi₂. Calc.: C, 67.4; H, 8.96; N, 3.28%. MS: m/z (%) 427 (10) $[M]^+$, 412 (12) $[M - Me]^+$, 370 (85) $[M - CMe_3]^+$. ¹H NMR (C₆D₆): δ 0.28 (s, NSiMe₃), δ 1.16 (s, ¹Bu), δ 6.33 (d, CH, ²J(¹H-³¹P) 4.8 Hz), δ 7.10 (Ph, 6H), δ 7.50 (t, *o*-Ph, 2H), δ 7.51 (t, *o*-Ph, 2H); ³¹P NMR (C₆D₆): δ - 31.8; ¹³C NMR (C₆D₆): δ 3.7 (d, SiMe₃, ⁵J(¹³C-³¹P) 3.1 Hz), δ 31.7 (s, C(CH₃)₃), δ 39.7 (d, C(CH₃)₃, ³J(¹³C-³¹P) 3.8 Hz), δ 120.0 (s, CH), δ 128.1 (s, *p*-C), δ 128.6 (d, *m*-C, ³J(¹³C-³¹P) 6.0 Hz), δ 133.0 (d, *o*-C, ²J(¹³C-³¹P) 18.8 Hz), δ 142.2 (d, *ipso*-C, ¹J(¹³C-³¹P) 12.6 Hz), δ 171.9 (d, CN, ²J(¹³C-³¹P) 21.9 Hz).

Irradiation of the Z-enamine **8** in C_6D_6 , in an NMR spectroscopic tube, using a medium pressure mercury lamp at room temperature for 1.5 h, afforded a mixture of **8** (2.4 parts) and its *E*-isomer **9** (1 part); this ratio remained unchanged after 12 h of further irradiation. For **9**, ¹H NMR (C_6D_6): $\delta 0.11$ (s, SiMe₃), $\delta 1.45$ (s, ¹Bu), $\delta 5.93$ (d, CH, ²J(¹H–³¹P) 6.0 Hz) (phenyl region was superimposed by signals of **8**); ³¹P NMR (C_6D_6): $\delta - 25.9$; ¹³C NMR (C_6D_6); $\delta 3.3$ (s, SiMe₃), $\delta 32.4$ (d, C(CH₃)₃, ⁴J(¹³C–³¹P) 11.8 Hz), $\delta 38.7$ (s, C(CH₃)₃), $\delta 123.4$ (d, CH, ¹J(¹³C–³¹P) 18.2 Hz), $\delta 131.2$ and 130.8 (d, *o*-Ph, d, ²J(¹³C–³¹P) 10.9 Hz), other signals in the phenyl region were superimposed by **8**, $\delta 169.8$ (d, CN, ²J(¹³C–³¹P) 25.9 Hz).

3.9. Synthesis of the phosphonium chlorides $[Ph_2PP(R)N(H)C(^{'}Bu) = CH]Cl \ 10 \ (R = Ph) \ and \ 11 \ (R = Et)$

Phenylphosphorus(III) chloride (0.14 cm³, 1.03 mmol) was added by pipette to the imine 7 (0.44 g,1.03 mmol) at room temperature; the reaction was exothermic and the initially mobile oil became increasingly viscous. The mixture was stirred at 50 °C for 30 min. Volatiles were removed in vacuo and the residue was washed with pentane (10 cm^3) . Recrystallisation from boiling toluene yielded colourless crystals of the phosphonium chloride 10 (0.31 g, 71%), which decomposed in the range 130-165 °C. Anal. Found: C, 68.2; H, 6.25; N, 2.96. C₂₄H₂₆CINP₂. Calc.: C, 67.7; H, 6.15; N, 3.29%. MS: m/z (%) 389 (72) $[M - HCl]^+$, 347 (37) $[M - C_6 H_6]^+$, 313 (100) $[M - Cl - Ph]^+$; ¹H NMR (CDCl₃) δ 1.43 (s, ¹Bu), δ 4.60 (d, NH, ⁴J(¹H-³¹P) 16.0 Hz), δ 6.84–7.18 (10H), δ 7.54–7.77 (5H), δ 10.09 (dd, CH, ${}^{3}J({}^{1}H-{}^{31}P)$ 32.3 Hz, ${}^{2}J({}^{1}H-{}^{31}P)$ 21.4 Hz); ³¹P NMR (CDCl₃): δ 15.0 (d, λ^3 P, ¹J(³¹P-³¹P) 238.5 Hz), δ 43.8 (d, $\lambda^4 P^+$, ¹J(³¹P-³¹P) 238.5 Hz); ¹³C NMR (CDCl₃): δ 29.3 (s, C(CH₃)₃; proton coupled q ¹J(¹³C-¹H) 129.8 Hz), δ 38.1 (d, C(CH₃)₃, ³J(¹³C-³¹P) 11.6 Hz), δ 64.8 (d, CH, ¹J(¹³C-³¹P) 72.6 Hz; proton coupled q, ¹³J(¹C-¹H) 178.9 Hz), δ 118.5 (d, *ipso*-C, ¹J(¹³C-³¹P) 79.5 Hz), δ 123.4 (dd, *ipso*-C, ²J(¹³C-³¹P) 75.5 Hz, ³J(¹³C-³¹P) 18.8 Hz), δ 125.1 (s, *ipso*-C), δ 128.0-134 (multiple multiplets of aromatic carbons), δ 186.4 (dd, CN, ²J(¹³C-³¹P) 13.6 and 14.1 Hz).

The ethyl analogue $[Ph_2PP(Et)N(H)C(^{t}Bu)=CH]Cl$ 11 of 10 was prepared in a similar manner from EtPCl. $(0.11 \text{ cm}^3, 1.1 \text{ mmol})$ and the imine 7 (0.47 g, 1.1 mmol); colourless crystals of 11 (0.21 g, 51%), decomposing at 100-108°C, were obtained after recrystallisation from hot toluene. Anal. Found: C, 61.2; H, 7.16; N, 3.77. C₂₀H₂₆ClNP₂. Calc.: C, 63.6, H,6.94; N, 3.71%. MS: m/z (%) 343 (5) $[MH - CI]^+$, 283 (12) [MH - CI -Pet]⁺, 220 (25) [Ph₂PCl]⁺. ¹H NMR (CDCl₃): δ 0.78 (dt, CH_2CH_3 , ${}^3J({}^1H-{}^{31}P)$ 18.12 Hz, ${}^3J({}^1H-{}^{1}H)$ 7.67 Hz), δ 1.38 (s, 'Bu), δ 1.59 and 1.94 (multiple multiplets, CH_2CH_3), $\delta 4.72$ (d, NH, ${}^{4}J({}^{1}H-{}^{31}P)$ 15.4 Hz), δ7.53-7.78 (Ph, 10 H), δ9.44 (dd, CH, ${}^{3}J({}^{1}H-{}^{31}P)$ 29.5 Hz, ${}^{2}J({}^{1}H-{}^{31}P)$ 22.6 Hz); ${}^{31}P$ NMR (CDCl₃): δ 28.6 (d, λ^{3} P, $^{1}J(^{31}$ P- 31 P) 245.4 Hz); δ 39.6 (d, $\lambda^4 P^+$, ${}^{1}J({}^{31}P^{-31}P)$ 245.4 Hz); ${}^{13}C$ NMR (CDCl₃): $\delta 7.7$ (d, CH₂CH₃, ${}^{2}J({}^{13}C^{-31}P)$ 16.6 Hz), $\delta 21.6$ (d, CH₂CH₃, ${}^{1}J({}^{13}C^{-31}P)$ 32.5 Hz), $\delta 29.3$ (s, C(CH₃)₃), δ 38.0 (d, C(CH₃)₃ d, ³J(¹³C-³¹P) 11.3 Hz), δ 63.7 (d, CH, ${}^{1}J({}^{13}C-{}^{31}P)$ 67.8 Hz), δ 125.2 (s, *ipso-C*) δ 128.6 (d, *ipso-C*, ${}^{1}J({}^{13}C-{}^{31}P)$ 61.1 Hz), δ 129.9–134.2 (aromatic C), δ 185.8 (s, CN).

3.10. Synthesis of the N-trimethylsilylphosphonium chlorides $[Ph_2PP(Cl)N(R)C(^{T}Bu)=CH]A$ 12 (A = Cl), 13 $(A = CF_3SO_3)$ and 14 $(A = BPh_4)$

Phosphorus(III) chloride (0.14 cm³, 1.57 mmol) was added by pipette to the imine 7 (0.67 g, 1.57 mmol) in hexane (20 cm^3) at $-30 \,^{\circ}$ C. While warming up to room temperature, formation of a pale yellow precipitate was observed. The reaction mixture was stirred for 1 h, then filtered. The precipitate was dried in vacuo and identified as 12 (0.52 g, 72%). ¹H NMR (CDCl₃): δ 0.18 (s, SiMe₃), δ 1.60 (s, 'Bu), δ 7.61-7.72 (Ph, 4H), δ 7.75-7.81 (Ph, 6H), δ 10.26 (dd, CH, ²J(¹H-³¹P) 30.8 Hz, ³J(¹H-³¹P) 21.5 Hz); ³¹P NMR (CDCl₃): δ 54.9 (d, $\lambda^4 P^+$, ${}^1 J({}^{31}P - {}^{31}P)$ 227.9 Hz), δ 69.2 (d, $\lambda^3 P$, ${}^1 J({}^{31}P - {}^{31}P)$ ³¹P) 227.9 Hz); ¹³C NMR (CDCl₃): δ 4.7 (s, SiMe₃), δ 30.4 (s, C(CH₃)₃), δ 40.8 (d, C(CH₃)₃, ³J(¹³C-³¹P) 14.9 Hz), CH not observed, δ 117.7 (dd, *ipso*-C, ¹ $J({}^{13}C-{}^{31}P)$ 70.9 Hz, ² $J({}^{13}C-{}^{31}P)$ 12.8 Hz), δ 130.0 and 133.3 (d, Ph, ² $J({}^{13}C-{}^{31}P)$ 12.2 and 8.8 Hz) δ 134.8 (s, *p*-Ph,), δ 191.0 (d, CN, ²J(¹³C-³¹P) 16.2 Hz). Attempts at recrystallisation, from mixtures of hot CH₂Cl₂ and C_5H_{12} or PhMe, led to decomposition of 12.

Silver triflate (0.27 g, 1.05 mmol) was added to a solution of the phosphonium chloride 12 (0.48 g, 1.05 mmol) in CH_2Cl_2 (15 cm³) at -40 °C. The reaction mixture was allowed to warm to room temperature and stirred for 12h, then filtered. Volatiles were removed from the filtrate in vacuo, and the colourless solid residue was recrystallised from a mixture of CH₂Cl₂ and Et₂O to give colourless crystals of 13 (0.33 g, 55%), decomposing in the range $130-190 \,^{\circ}\text{C}$. MS: m/z (%) 419 (7) [M (cation) – H]⁺, 385 (8) [M $(cation) - Cl]^+$, 363 (15) $[M (cation) - CMe_1]^+$. ^{1}H NMR (CDCl₃): $\delta 0.21$ (s, SiMe₃), $\delta 1.52$ (s, ^tBu), δ 7.65–7.86 (Ph, 10H), δ 8.77 (dd, CH, ²J(¹H–³¹P) 32.3 Hz, ³J(¹H–³¹P) 25.6 Hz); ³¹P NMR (CDCl₃): δ 61.7 (d, $λ^4P^+$, ¹J(³¹P–³¹P) 233.5 Hz), δ 73.0 (d, $λ^3P$, $^{13}J(^{31}P-^{31}P)$ 233.5 Hz); ^{13}C NMR (CDCl₃): δ 4.8 (s, SiMe₃), δ 30.1 (s, C(CH₃)₃), δ 40.9 (d, C(CH₃)₃, ${}^{3}J({}^{13}C-{}^{31}P)$ 15.0 Hz), δ 78.2 (d, CH, ${}^{1}J({}^{13}C-{}^{31}P)$ 16.8 Hz), δ 116.2 (d, *ipso*-C, ¹J(¹³C-³¹P) 76.1 Hz), δ 120.5 (q, CF₃, ¹J(¹³C-³¹P) 320.3 Hz), δ 130.1 and 130.4 (d, Ph, ²J(¹³C-³¹P) 12.8 and 12.1 Hz), δ 133.1 and 133.8 (d, Ph, ${}^{3}J({}^{13}C-{}^{31}P)$ 5.4 and 9.1 Hz), δ 135.3 (s, *p*-C), δ 191.5 (d, CN, ${}^{2}J({}^{13}C-{}^{31}P)$ 18.2 Hz).

Solid sodium tetraphenylborate (0.35 g, 1.07 mmol) was added to a solution of the phosphonium chloride 12 (0.49 g, 1.07 mmol) in CH₂Cl₂ (20 cm^3) at $-40 \degree$ C. The reaction mixture was allowed to warm to room temperature and stirred for 1 h. Initially the Na[BPh₄] floated on top of the mixture, but gradually a denser precipitate (NaCl) settled at the bottom of the reaction vessel, and was filtered off. Volatiles were removed from the filtrate in vacuo, leaving a residue of crude 14 (0.80 g, 100%); attempts to crystallise 14, by dissolving it in CH_2Cl_2 and adding PhMe, C_5H_{12} or Et_2O , proved to be unsuccessful. ¹H NMR (CDCl₃): $\delta 0.18$ (s, SiMe₃), $\delta 1.27$ (s, ¹Bu), $\delta 6.15$ (dd, CH, ^{2/3}J(¹H-³¹P) 27.6 and 25.6 Hz); δ 6.86–7.00 and 7.27–7.78 (Ph, 30H); ³¹P NMR (CDCl₃): δ 63.1 (d, $\lambda^4 P^+$, ${}^1J({}^{31}P-{}^{31}P)$ 241.0 Hz), δ 69.5 (d, λ^{3} P, ¹J(³¹P-³¹P) 241.0 Hz); ¹¹B NMR (CDCl₃): $\delta - 9.2$ (s, BPh₄).

3.11. Reactions of $[Li{N(R)C('Bu)CHR}]_2$ 1 with POCl₃ or ICl

A solution of $[\overline{\text{Li}(\text{LL}')}]_2$ 1 (3.0 g, 6.0 mmol) in pentane (15 cm³) was slowly added to POCl₃ (0.55 cm³, 6.0 mmol) in pentane (30 cm³) at -60 °C. The reaction mixture was allowed to warm to room temperature and stirred for 12 h. Removal of volatiles and distillation of the residue afforded the pale yellow liquid imine Me₃SiN=C(^tBu){CH(Cl)SiMe₃} 15 (0.70 g, 21%), b.p. 60-64 °C/10⁻¹ Torr. Anal. Found: C, 51.7; H, 10.1; N, 5.07. C₁₂H₂₈ClNSi₂. Calc.: C, 51.9; H, 10.2; N, 5.04%. ¹H NMR (C₆D₆): δ 0.12 (s, SiMe₃), δ 0.30 (s, SiMe₃), δ 1.01 (s, ^tBu), δ 4.2 (s, CH); ¹³C NMR (C₆D₆): δ -1.8 (s, SiMe₃), δ 2.3 (s, SiMe₃), δ 28.7 (s, C(CH₃)₃), δ 43.9 (s, C(CH₃)₃), δ 49.2 (s, CH), δ 180.4 (s, CN).

Similarly, from $[\text{Li}(\text{LL}')]_2$ 1 (1.23 g, 2.46 mmol) and ICl (0.80 g, 4.93 mmol) in pentane (55 cm³), and stirring at room temperature for 2 h and then for a further 60 h, upon addition of Et₂O (4 cm³), the initially red reaction mixture had become pale yellow with a yellow precipitate. Removal of the solvent from the filtrate and distillation of the residue yielded the air-sensitive, yellow liquid imine Me₃SiN=C(¹Bu){CH(I)SiMe₃} 16 (1.1 g, 60%), b.p. 70–74 °C/10⁻² Torr. Anal. Found: C, 37.8; H, 7.58; N, 3.86. C₁₂H₂₈INSi₂. Calc: C, 39.0; H, 7.64; N, 3.79%. MS: m/z (%): 354 (20) $[M - \text{Me}]^+$; 312 (98) $[M - \text{CMe}_3]^+$; 242 (7) $[M - I]^+$. ¹H NMR (C₆D₆): δ 0.16 (s, SiMe₃), δ 0.26 (s, SiMe₃), δ 1.04 (s, ¹Bu), δ 3.94 (s, CH); ¹³C NMR (C₆D₆): δ -0.7 (s, SiMe₃), δ 2.2 (s, SiMe₃), δ 15.2 (s, CH), δ 29.5 (s, C(CH₃)₃), δ 44.6 (s, C(CH₃)₃), δ 182.6 (s, CN).

3.12. The reaction of $[Li(N(R)C(Ph)CR_2)(THF)]$ (R = $SiMe_3$) E with $CF_3SO_3SiMe_3$

Trimethylsilyl triflate $(1.40 \text{ cm}^3, 7.3 \text{ mmol})$ in pentane (10 cm^3) was added to a suspension of the 1-aza-allyllithium compound **E** (3.05 g, 7.3 mmol) in pentane (50 cm^3) at -40 °C. The reaction mixture was allowed to warm to room temperature and stirred for 12 h, then filtered. Removal of volatiles from the filtrate in vacuo yielded the colourless, waxy solid **17** (2.66 g, 89%).

 Table 7

 Crystallographic data for compounds 3 and 10

Anal. Found: C, 57.7; H, 10.0; N, 3.70. $C_{20}H_{41}NSi_4$. Calc.: C, 58.9; H, 10.1; N, 3.43%. MS: m/z (%): 407 (35) $[M]^+$, 392 (18) $[M - Me]^+$, 334 (63) $[M - SiMe_3]^+$; ¹H NMR (C_6D_6): $\delta - 0.06$ (s, SiMe₃), $\delta 0.16$ (s, NSiMe₃), $\delta 0.43$ (s, SiMe₃), $\delta 7.02$ (m, p-Ph, 3H), $\delta 7.28$ (o-Ph, 2H); ¹³C NMR (C_6D_6): $\delta 1.2$ (s, NSiMe₃), $\delta 1.4$ (s, SiMe₃), $\delta 1.6$ (s, SiMe₃), $\delta 125.6$ (s, m-C), $\delta 126.7$ (s, p-Ph), $\delta 128.1$ (s, CSi₂), $\delta 129.3$ (s, o-Ph), $\delta 145.5$ (s, *ipso*-C), $\delta 166.1$ (s, CN).

3.13. X-ray structure determination of the diazaphosphetidine 3 and the phosphonium chloride 10

Data were collected on an Enraf-Nonius CAD4 diffractometer using monochromatic Mo-K α radiation and crystals sealed under argon in Lindemann capillaries. Cell dimensions were calculated from the setting angles for 25 reflections with $9 < \theta < 13^{\circ}$. Intensities were measured by an $\omega - 2\theta$ scan. Corrections were made for Lorentz and polarisation effects but not for absorption. There was no crystal decay as measured by two standard reflections. Positions of non-hydrogen atoms were derived by direct methods using SHELXS-86 and refined on F^2 with anisotropic thermal parameters by full-matrix least squares using SHELXL-93.

Further details are in Table 7. Hydrogen atom positions, anisotropic thermal parameters and structure factors are available from P.B.H.

crysunographic data for componies o and av				
Compounds	3	10		
Formula	$C_{18}H_{38}Cl_2N_2P_2Si_2$	$C_{24}H_{26}CINP_2$		
Μ	471.5	425.8		
Temperature (K)	293 (2)	293 (2)		
Wavelength (Å)	0.71073	0.71073		
Crystal system	monoclinic	monoclinic		
Space group	$P2_1/c$ (No. 14)	C2/c (No. 15)		
a (Å)	9.187 (2)	31.552 (7)		
<i>b</i> (Å)	12.606 (2)	9.310 (2)		
c (Å)	12.005 (1)	16.088 (7)		
α (deg)	101.60(1)	97.39 (2)		
$U(Å^3)$	1361.9 (4)	4687 (3)		
Ζ	2	8		
$D_{\rm c} ({\rm mgm^{-3}})$	1.15	1.21		
F(000)	504	1792		
$\mu (\text{mm}^{-1})$	0.45	0.31		
Crystal size (mm ³)	0.4 imes 0.4 imes 0.2	0.3 imes 0.2 imes 0.2		
θ min and max (deg)	2 to 30	2 to 25		
Index ranges	$0 \le h \le 12, 0 \le k \le 17, -16 \le l \le 16$	$0 \le h \le 37, 0 \le k \le 11, -19 \le l \le 18$		
Reflections collected	4161	4179		
Independent reflections	$3947 (R_{int} = 0.039)$	$4108 (R_{int} = 0.022)$		
Reflections with $I > 2\sigma(I)$	2525	2256		
No. of variables	124	253		
$R1 (I > 2\sigma(I))$	0.052	0.061		
wR2 (all data)	0.146	0.156		
Largest diff. peak (e Å ⁻³)	0.46	0.24		

Acknowledgements

We are grateful to the E.C. for the award of a fellowship to M.L., within the HCM Programme (Contract No. ERBCHBGCT930264) and to EPSRC for other support.

References

- [1] M.F. Lappert and D.-S. Liu, J. Organomet. Chem., 500 (1995) 203.
- [2] P.B. Hitchcock, M.F. Lappert and D.-S. Liu, J. Chem. Soc. Chem. Commun., (1994) 2637.
- [3] P.B. Hitchcock, S.A. Holmes, M.F. Lappert and S. Tian, J. Chem. Soc. Chem. Commun., (1994) 2691.
- [4] P.B. Hitchcock, M.F. Lappert, D.-S. Liu and E.J. Ryan, *Polyhe-dron*, 14 (1995) 2745.
- [5] (a) P.B. Hitchcock, J. Hu, M.F. Lappert, M. Layh, D.-S. Liu, J. Severn and S. Tian, *Anal. Quim. Int. Ed. Engl.*, 92 (1996) 186; (b) unpublished results.
- [6] E. Niecke, W. Flick and S. Pohl, Angew. Chem. Int. Ed. Engl., 15 (1976) 309. O.J. Scherer and W. Glässel, Chem. Ber., 110 (1977) 3874.
- [7] N. Weferling and R. Schmutzler, Chem. Ber., 122 (1989) 1465.
- [8] O.J. Scherer and P. Klusmann, Angew. Chem. Int. Ed. Engl., 8 (1969) 752. K.W. Muir, J. Chem. Soc. Dalton Trans., (1975) 259. K.W. Muir and J.F. Nixon, J. Chem. Soc. Chem. Commun., (1971) 1405.
- [9] H.-J. Chen, R.C. Haltiwanger, T.G. Hill, M.L. Thompson, D.E. Coons and A. D. Norman, *Inorg. Chem.*, 24 (1985) 4725.

- [10] V.D. Romanenko, A.B. Drapailo, A.N. Chernega and L.N. Markovskii, Zh. Obshch. Khim., 61 (1991) 2434.
- [11] G. David, E. Niecke, M. Nieger, V. von der Gönna and W.W. Schoeller, Chem. Ber., 126 (1993) 1513.
- [12] U. Wirringa, H. Voelker, H.W. Roesky, Y. Shermolovich, L. Markovski, I. Uśon, M. Noltemeyer and H.-G. Schmidt, J. Chem. Soc. Dalton Trans., (1995) 1951.
- [13] W. Zeiss, C. Feldt, J. Weis and G. Dunkel, Chem. Ber., 111 (1978) 1180.
- [14] M.L. Thompson, A. Tarassoli, R.C. Haltiwanger and A.D. Norman, J. Am. Chem. Soc., 103 (1981) 6770.
- [15] R. Keat, A.N. Keith, A. Macphee, K.W. Muir and D.G. Thomson, J. Chem. Soc. Chem. Commun., (1978) 372. M.L. Thompson, A. Tarassoli, R.C. Haltiwanger and A.D. Norman, Inorg. Chem., 26 (1987) 684. A.F. Grapov, L.V. Razvodovskaya and N.N. Mel'nikov, Russ. Chem. Rev., 50 (1981) 324.
- [16] W.A. Kamil, M.R. Bond, R.D. Willett and J.M. Shreeve, *Inorg. Chem.*, 26 (1987) 2829. S.S. Kumaravel, S.S. Krishnamurthy, T.S. Cameron and A. Linden, *Inorg. Chem.*, 27 (1988) 4546.
 S.S. Kumaravel, S.S. Krishnamurthy, B.R. Vincent and T.S. Cameron, Z. Naturforsch. Teil. B:, 41 (1986) 1067. R. Keat, L. Murray and D.S. Rycroft, J. Chem. Soc. Dalton Trans., (1982) 1503. W.A. Kamil, M.R. Bond and J.M. Shreeve, *Inorg. Chem.*, 26 (1987) 2015. V.S. Reddy, S.S. Krishnamurthy and M. Nethaji, J. Chem. Soc. Dalton Trans., (1994) 2661.
- [17] H. Grützmacher and H. Pritzkow, Chem. Ber., 122 (1989) 1411.
- [18] L. Ernst, P.G. Jones, P. Look-Herber and R. Schmutzler, Chem. Ber., 123 (1990) 35.
- [19] R. Vogt, P.G. Jones and R. Schmutzler, Chem. Ber., 126 (1993) 1271.
- [20] D. Schomburg, Acta Crystallogr. Sect. A:, 40 (1984) C265.
- [21] D. Schomburg, G. Bettermann, L. Ernst and R. Schmutzler, Angew. Chem. Int. Ed. Engl., 24 (1985) 975.